';

Übungstest

Dieser Übungstest besteht aus 8 Fragen zu Partielle Ableitungen.
Die Schwierigkeitsstufe ist leicht bis schwer.
Es können bei jeder Frage eine oder mehrere Antworten korrekt sein, aber nie alle.

Test als PDF ausgeben (Kann je nach Länge einige Minuten dauern)

Leite die Gleichung \(F=\frac{3k^2}{p^3}\) partiell nach \(p\) ab!

Nr. 2686

5 erreichbare Punkte

Gegeben ist die Funktion \(R\left.\left(x,y\right)\right.=\frac{y^3}{3x^2}\). Leite diese partiell nach \(x\) ab!

Nr. 2700
Lösungsweg

5 erreichbare Punkte

Welche der folgenden Rechenregeln ist/sind für das partielle Ableiten relevant?

Nr. 2702

5 erreichbare Punkte

Leite nach \(x\) ab.

 

\(F(x,\ y,\ \omega)=\e^{-xy}\,sin(\omega x)\)

Nr. 4386
Lösungsweg

5 erreichbare Punkte

Leite folgende Funktion partiell nach \(z\) ab \(F\left(x,y,z\right)=\frac{3xy}{z^2}\)

Nr. 2697
Lösungsweg

5 erreichbare Punkte

Gegeben seien die Größen \(m\) mit einem Mittelwert von \(\bar{m}=9,78\) und einer Standardabweichung \(\sigma= 0,16\) sowie n mit einem Mittelwert von \( \bar{n}=100,2\) und einer Standardabweichung von \(\sigma=0,079\).

Für die Rechengröße \(\bar{F}\) gilt: \(\bar{F}=\frac{\bar{n}^3}{7\bar{m}^2}\).

Wie lautet die partielle Ableitung nach \(m\)?

Nr. 2681

5 erreichbare Punkte

Es gilt \(R=\frac{y^3}{3x^2}\) - leite partiell nach \(y\) ab!

Nr. 2701

5 erreichbare Punkte

Leite folgende Funktion partiell nach \(x\) ab: \(F=\frac{3xy}{z^2}\)

Nr. 2695

5 erreichbare Punkte


NEWS

Derzeit kommt es beim Rendern der Formeln leider zu einem Problem. Wir sind bemüht das Problem zu lösen.

Auch in diesem Semester für alle FHTW Studierenen wieder verfügbar: Der Mathe-Support

Mathematik lernen ist eine Herausforderung, vor allem im Eigenstudium! Sie tun sich schwer beim Lesen von mathematischen Skripten oder kommen bei den Übungsaufgaben nicht weiter? Vielleicht wollen Sie auch einfach nicht alleine, sondern lieber in einer Gruppe lernen? Dann kommen Sie zum Mathe-Support!

https://www.technikum-wien.at/mathe-support/

Die Mathe Plattform des Technikum Wien gewinnt den eLearning Award 2019 als Projekt des Jahres in der Kategorie Hochschule.

Festigen Sie Ihre Grundkenntnisse und bereiten Sie sich auf Prüfungen vor.
Im Juli starten wieder die Warm-up Kurse - ein kostenloser Service für Aufgenommene und Studierende der FHTW.


Mathematik, Physik, Elektrotechnik, Informatik, Englisch und Deutsch in kompakten Kursen, geblockt bis September.

Anmeldung und Informationen
Warm-up-Kurse

Die Plattform wächst! Wir bauen im Moment den Bereich des Studienwissens aus. Bitte haben Sie Verständnis, dass die Inhalte dort erst nach und nach ergänzt werden. Ebenso kann es bei Design und Grafik noch zu Änderungen, Verbesserungen und kleinen Bugs kommen. Danke für Ihr Verständnis!

weitere News

Wussten Sie schon?

Bei uns können Sie auch reine Mathematik üben: www.mathe.technikum-wien.at