Übungstest

Dieser Übungstest besteht aus 8 Fragen zu Einfache Kinematik.
Die Schwierigkeitsstufe ist leicht bis schwer.
Es können bei jeder Frage eine oder mehrere Antworten korrekt sein, aber nie alle.

Test als PDF ausgeben (Kann je nach Länge einige Minuten dauern)

Welche Näherungsformel kann verwendet werden, um die Tiefe \(h\) eines Brunnens abzuschätzen?

Dabei ist \(t\) die Zeit, die vergeht zwischen dem Loslassen eines Steines, den man in den Brunnen fallen lässt, und dem Hören des Aufprallgeräusches, \(g\) ist die Erdbeschleunigung, \(c\) die Schallgeschwindigkeit.

Nr. 2105
Lösungsweg

5 erreichbare Punkte

Auf den geöffneten Fallschirm eines Fallschirmspringers wirke infolge des Luftreibung eine Bremsbeschleunigung \(a=-b v^2\) mit der Konstanten \(b=0,2\) . Wie groß ist die konstante Endgeschwindigkeit \(v_e\) des Springers?

Nr. 4168
Lösungsweg

4 erreichbare Punkte

Die Lichtgeschwindigkeit (welche üblicherweise das Formelzeichen \(c\) trägt) beträgt in etwa \(3,0 \cdot 10^8\ \frac{m}{s}\). Welche Strecke \(s\) (in Meter) legt demnach ein Lichtstrahl in einem Jahr zurück? (Hinweis: Es wird das sogenannte 'Lichtjahr' berechnet. Ein Lichtjahr ist somit keine Zeit wie der Name vermuten lassen könnte, sondern eine Länge bzw.Strecke)

Nr. 1602
Lösungsweg

5 erreichbare Punkte

Gegeben sei die Lösung \(x(t)=A\cos\omega t+B\sin\omega t\) des linearen harmonischen Oszillators. Zu welcher Zeit \(t_0\) erreicht der Oszillator seinen maximal Ausschlag \(x_{Max}\)? Wie lautet der Ausdruck für \(x_{Max}\)?

Nr. 4183
Lösungsweg

4 erreichbare Punkte

Fußballer Marko A. verliert in Spielminute \(36\,:\,00\) den Ball \(5\,m\) vor dem gegnerischen Tor und beginnt mit konstanter Geschwindigkeit (parallel zur Seitenoutlinie) zurückzu"laufen". In Minute \(37\,:\,00\) kommt er \(10\,m\) vor der eigenen Torlinie zu einem Eckball an. 

Das Fußballfeld ist genau \(105\,m\) lang.

Wie schnell ist er "gelaufen"?

Nr. 1834
Lösungsweg

5 erreichbare Punkte

Gegeben sei folgendes \(v(t)\mathrm{-Diagramm}\) (\(t \, \mathrm{in}\, s\) und \(v(t) \, \mathrm{in}\; \frac{m}{s}\)), das die Geschwindigkeit in Abhängigkeit der Zeit für einen geradlinig bewegten Körper beschreibt. Nach welcher Zeit \(t_n\, >\, 0\) befindet sich der Körper wieder am Ausgangort seiner Bewegung?

Nr. 4428
Lösungsweg

5 erreichbare Punkte

Ein Objekt erfährt eine Beschleunigung \(a=8,6\ \frac{m}{s^2}\) und beschleunigt von \(v_1=5\ \frac{m}{s}\) auf \(v_2=30\ \frac{m}{s}\).

Wie lange braucht es dafür?

Nr. 3328
Lösungsweg

5 erreichbare Punkte

Ein Objekt beschleunigt gleichmäßig aus dem Stand mit \(3,9\ \frac{m}{s^2}\)
Damit beschleunigt es \(11\mathrm{\ Sekunden}\)

Welche Geschwindigkeit hat es nun erreicht?

Nr. 3104
Lösungsweg

5 erreichbare Punkte


NEWS

Derzeit kommt es beim Rendern der Formeln leider zu einem Problem. Wir sind bemüht das Problem zu lösen.

Auch in diesem Semester für alle FHTW Studierenen wieder verfügbar: Der Mathe-Support

Mathematik lernen ist eine Herausforderung, vor allem im Eigenstudium! Sie tun sich schwer beim Lesen von mathematischen Skripten oder kommen bei den Übungsaufgaben nicht weiter? Vielleicht wollen Sie auch einfach nicht alleine, sondern lieber in einer Gruppe lernen? Dann kommen Sie zum Mathe-Support!

https://www.technikum-wien.at/mathe-support/

Die Mathe Plattform des Technikum Wien gewinnt den eLearning Award 2019 als Projekt des Jahres in der Kategorie Hochschule.

Festigen Sie Ihre Grundkenntnisse und bereiten Sie sich auf Prüfungen vor.
Im Juli starten wieder die Warm-up Kurse - ein kostenloser Service für Aufgenommene und Studierende der FHTW.


Mathematik, Physik, Elektrotechnik, Informatik, Englisch und Deutsch in kompakten Kursen, geblockt bis September.

Anmeldung und Informationen
Warm-up-Kurse

Die Plattform wächst! Wir bauen im Moment den Bereich des Studienwissens aus. Bitte haben Sie Verständnis, dass die Inhalte dort erst nach und nach ergänzt werden. Ebenso kann es bei Design und Grafik noch zu Änderungen, Verbesserungen und kleinen Bugs kommen. Danke für Ihr Verständnis!

weitere News