Übungstest

Dieser Übungstest besteht aus 8 Fragen zu Einfache Kinematik.
Die Schwierigkeitsstufe ist leicht bis schwer.
Es können bei jeder Frage eine oder mehrere Antworten korrekt sein, aber nie alle.

Test als PDF ausgeben (Kann je nach Länge einige Minuten dauern)

Wir betrachten die Bewegung in einer Dimension. Ein Objekt der Masse \(m=1,85\, g\) bewegt sich mit konstanter Geschwindigkeit und legt dabei in \(4,46 \, s\) Sekunden eine Strecke von \(16,98\, m\) zurück. Welchen Impuls \(p\) hat das Objekt? Runde auf drei signifikante Stellen genau (Wie immer in der entsprechenden SI-Einheit)!

Nr. 1600
Lösungsweg

5 erreichbare Punkte

Welche Näherungsformel kann verwendet werden, um die Tiefe \(h\) eines Brunnens abzuschätzen?

Dabei ist \(t\) die Zeit, die vergeht zwischen dem Loslassen eines Steines, den man in den Brunnen fallen lässt, und dem Hören des Aufprallgeräusches, \(g\) ist die Erdbeschleunigung, \(c\) die Schallgeschwindigkeit.

Nr. 2105
Lösungsweg

5 erreichbare Punkte

Ein Auto fährt \(30\, s\) mit der Geschwindigkeit \(72\, \frac{km}{h}\) geradeaus, und danach \(48\, s\) mit \(36\, \frac{km}{h}\) in die selbe Richtung. Im Anschluss fährt es mit \(54\, \frac{km}{h}\)  in entgegengesetzte Richtung zum Ausgangspunkt zurück. Wie lange dauert die Rückfahrt?

Nr. 1592
Lösungsweg

5 erreichbare Punkte

Gegeben sei die Lösung \(x(t)=A\cos\omega t+B\sin\omega t\) des linearen harmonischen Oszillators. Zu welcher Zeit \(t_0\) erreicht der Oszillator seinen maximal Ausschlag \(x_{Max}\)? Wie lautet der Ausdruck für \(x_{Max}\)?

Nr. 4183
Lösungsweg

4 erreichbare Punkte

Ein Objekt beschleunigt innerhalb von \(10\) Sekunden gleichförmig von der Geschwindigkeit \(v_0 = 10 \ \frac{m}{s}$ \) auf die Geschwindigkeit \(v_1= 60 \ \frac{m}{s}\). Berechne die Beschleunigung \(a\) des Objekts.

Nr. 1532
Lösungsweg

5 erreichbare Punkte

Ein Auto benötigt eine Zeit \(t=3,9\,s\) um von \(0-100\ \frac{km}h}\) kommen und beschleunigt dabei gleichförmig.

Berechne die Beschleunigung \(a\)

Nr. 3322
Lösungsweg

5 erreichbare Punkte

Fußballer Marko A. verliert in Spielminute \(36\,:\,00\) den Ball \(5\,m\) vor dem gegnerischen Tor und beginnt mit konstanter Geschwindigkeit (parallel zur Seitenoutlinie) zurückzu"laufen". In Minute \(37\,:\,00\) kommt er \(10\,m\) vor der eigenen Torlinie zu einem Eckball an. 

Das Fußballfeld ist genau \(105\,m\) lang.

Wie schnell ist er "gelaufen"?

Nr. 1834
Lösungsweg

5 erreichbare Punkte

Ein Auto fährt mit einer konstanten Geschwindigkeit \(v=43\ \frac{km}{h}\) gerade aus.
Wie weit ist das Auto nach \(t=20\,min\) gefahren?

Nr. 3137
Lösungsweg

5 erreichbare Punkte


NEWS

Derzeit kommt es beim Rendern der Formeln leider zu einem Problem. Wir sind bemüht das Problem zu lösen.

Auch in diesem Semester für alle FHTW Studierenen wieder verfügbar: Der Mathe-Support

Mathematik lernen ist eine Herausforderung, vor allem im Eigenstudium! Sie tun sich schwer beim Lesen von mathematischen Skripten oder kommen bei den Übungsaufgaben nicht weiter? Vielleicht wollen Sie auch einfach nicht alleine, sondern lieber in einer Gruppe lernen? Dann kommen Sie zum Mathe-Support!

https://www.technikum-wien.at/mathe-support/

Die Mathe Plattform des Technikum Wien gewinnt den eLearning Award 2019 als Projekt des Jahres in der Kategorie Hochschule.

Festigen Sie Ihre Grundkenntnisse und bereiten Sie sich auf Prüfungen vor.
Im Juli starten wieder die Warm-up Kurse - ein kostenloser Service für Aufgenommene und Studierende der FHTW.


Mathematik, Physik, Elektrotechnik, Informatik, Englisch und Deutsch in kompakten Kursen, geblockt bis September.

Anmeldung und Informationen
Warm-up-Kurse

Die Plattform wächst! Wir bauen im Moment den Bereich des Studienwissens aus. Bitte haben Sie Verständnis, dass die Inhalte dort erst nach und nach ergänzt werden. Ebenso kann es bei Design und Grafik noch zu Änderungen, Verbesserungen und kleinen Bugs kommen. Danke für Ihr Verständnis!

weitere News