Übungstest

Dieser Übungstest besteht aus 8 Fragen zu Einfache Kinematik.
Die Schwierigkeitsstufe ist leicht bis schwer.
Es können bei jeder Frage eine oder mehrere Antworten korrekt sein, aber nie alle.

Test als PDF ausgeben (Kann je nach Länge einige Minuten dauern)

Zwei Autos sind \(s=900\,m\) von einander entfernt. Gleichzeitig beginnen sie aufeinander zuzufahren. Auto A fährt mit \(v_A=50\ \frac{km}{h}\) und Auto B mit \(v_B=30\ \frac{km}{h}\)

Nach welcher Zeit \(t\) kollidieren die zwei Fahrzeuge?

Nr. 3133
Lösungsweg

5 erreichbare Punkte

Usain Bolt beschleunigt beim Start eines Sprints in \(t=2\,s\) von \(v_1=0\ \frac{km}{h}\) auf \(v_2=36\ \frac{km}{h}\).

Wie hoch ist seine Beschleunigung \(a\) (in der Annahme, dass er gleichförmig beschleunigt)?

Nr. 1839
Lösungsweg

4 erreichbare Punkte

Ein Auto benötigt eine Zeit \(t=3,9\,s\) um von \(0-100\ \frac{km}h}\) kommen und beschleunigt dabei gleichförmig.

Berechne die Beschleunigung \(a\)

Nr. 3322
Lösungsweg

5 erreichbare Punkte

Oft spricht man von einem Lichtjahr, die Distanz, die Licht in einem Jahr zurücklegt.

Die Geschwindigkeit von Schall beträgt bei trockener Luft etwa \(v=342,2\ \frac{m}{s}\).

Wie weit kommt also Schall in einem Jahr?

Hinweis: Es gibt keinerlei Hindernisse und die Lufteigenschaften seien konstant.

Nr. 3135
Lösungsweg

5 erreichbare Punkte

Ein Auto beschleunigt gleichförmig in der Zeit \(t=5\,s\) von der Geschwinigkeit \(v_1=30\ \frac{km}{h}\) auf \(v_2=100\ \frac{km}{h}\).

Berechne die durchschnittliche Beschleunigung \(a\).

Nr. 3321
Lösungsweg

5 erreichbare Punkte

Ein Gepard benötigt \(3 \mathrm{\ Sekunden}\), um aus dem Stand auf seine Höchstgeschwindigkeit von \(122\ \frac{km}{h}\) zu kommen.
Das neue Model S von Tesla benötigt \(2,4 \mathrm{\ Sekunden}\) von \(0\) auf \(100\ \frac{km}{h}\).

Wer beschleunigt schneller?

Nr. 3100
Lösungsweg

4 erreichbare Punkte

Wir betrachten die Bewegung in einer Dimension. Ein Objekt der Masse \(m=1,85\, g\) bewegt sich mit konstanter Geschwindigkeit und legt dabei in \(4,46 \, s\) Sekunden eine Strecke von \(16,98\, m\) zurück. Welchen Impuls \(p\) hat das Objekt? Runde auf drei signifikante Stellen genau (Wie immer in der entsprechenden SI-Einheit)!

Nr. 1600
Lösungsweg

5 erreichbare Punkte

Gegeben sei die Lösung \(x(t)=A\cos\omega t+B\sin\omega t\) des linearen harmonischen Oszillators. Zu welcher Zeit \(t_0\) erreicht der Oszillator seinen maximal Ausschlag \(x_{Max}\)? Wie lautet der Ausdruck für \(x_{Max}\)?

Nr. 4183
Lösungsweg

4 erreichbare Punkte


NEWS

Derzeit kommt es beim Rendern der Formeln leider zu einem Problem. Wir sind bemüht das Problem zu lösen.

Auch in diesem Semester für alle FHTW Studierenen wieder verfügbar: Der Mathe-Support

Mathematik lernen ist eine Herausforderung, vor allem im Eigenstudium! Sie tun sich schwer beim Lesen von mathematischen Skripten oder kommen bei den Übungsaufgaben nicht weiter? Vielleicht wollen Sie auch einfach nicht alleine, sondern lieber in einer Gruppe lernen? Dann kommen Sie zum Mathe-Support!

https://www.technikum-wien.at/mathe-support/

Die Mathe Plattform des Technikum Wien gewinnt den eLearning Award 2019 als Projekt des Jahres in der Kategorie Hochschule.

Festigen Sie Ihre Grundkenntnisse und bereiten Sie sich auf Prüfungen vor.
Im Juli starten wieder die Warm-up Kurse - ein kostenloser Service für Aufgenommene und Studierende der FHTW.


Mathematik, Physik, Elektrotechnik, Informatik, Englisch und Deutsch in kompakten Kursen, geblockt bis September.

Anmeldung und Informationen
Warm-up-Kurse

Die Plattform wächst! Wir bauen im Moment den Bereich des Studienwissens aus. Bitte haben Sie Verständnis, dass die Inhalte dort erst nach und nach ergänzt werden. Ebenso kann es bei Design und Grafik noch zu Änderungen, Verbesserungen und kleinen Bugs kommen. Danke für Ihr Verständnis!

weitere News