Übungstest

Dieser Übungstest besteht aus 8 Fragen zu Einfache Kinematik.
Die Schwierigkeitsstufe ist leicht bis schwer.
Es können bei jeder Frage eine oder mehrere Antworten korrekt sein, aber nie alle.

Test als PDF ausgeben (Kann je nach Länge einige Minuten dauern)

Gegeben sei die Bahnkurve

\(\vec{r}(t)=\left(\begin{array}{c} t\\ \frac{1}{\sqrt{2}}t^{2}\\ \frac{1}{3}t^{3} \end{array}\right)\).

Wie lautet der Ausdruck für die Krümmung \(\kappa(t)\) der Bahnkurve?

Nr. 4172
Lösungsweg

4 erreichbare Punkte

Ein Objekt fällt für eine Zeit \(t=4\,s\) aus einem Flugzeug, welches sich auf einer Höhe \(h=10\,\,000\,m\)befindet, und das Objekt beschleunigt mit der Erdbeschleunigung \(a=9,81\ \frac{m}{s^2}\)

Welche Geschwindigkeit \(v\) hat das Objekt nun? 

Nr. 3489
Lösungsweg

4 erreichbare Punkte

Die Erdbeschleunigung \(g\) kann man mithilfe eines mathematischen Pendels überprüfen.
Sie ist definiert als \(g=\(\frac{4\cdot \pi^2\cdot l}{T_0^2}\)\).

Wie lange dauert also ein Pendelschwung \(T_0\), wenn die Fadenlänge \(l=8\,cm\) beträgt? 

Nr. 3294
Lösungsweg

4 erreichbare Punkte

Ein Auto fährt \(30\, s\) mit der Geschwindigkeit \(72\, \frac{km}{h}\) geradeaus, und danach \(48\, s\) mit \(36\, \frac{km}{h}\) in die selbe Richtung. Im Anschluss fährt es mit \(54\, \frac{km}{h}\)  in entgegengesetzte Richtung zum Ausgangspunkt zurück. Wie lange dauert die Rückfahrt?

Nr. 1592
Lösungsweg

5 erreichbare Punkte

Ein Körper wird aus einer Höhe \(h_0\) mit einer Geschwindigkeit \(v_0\) senkrecht nach unten geworfen. Welches der folgenden Weg-Zeit-Diagramme beschreibt solch einen Fall?

Nr. 4434
Lösungsweg

5 erreichbare Punkte

Gegeben sei folgendes Geschwindigkeits-Zeit-Diagramm, das die geradlinige Bewegung eines Körpers beschreibt. Wann ist der betrachtete Körper am weitesten entfernt vom Anfangsort?

Nr. 4427
Lösungsweg

5 erreichbare Punkte

Ein Objekt erfährt eine Beschleunigung \(a=8,6\ \frac{m}{s^2}\) und beschleunigt von \(v_1=5\ \frac{m}{s}\) auf \(v_2=30\ \frac{m}{s}\).

Wie lange braucht es dafür?

Nr. 3328
Lösungsweg

5 erreichbare Punkte

Zwei Autos sind \(1800\, m\) voneinander entfernt. Sie fahren zum selben Zeitpunkt los. 
Auto A hat eine Geschwindigkeit  \(v_A=90\ \frac{km}{h}\) und Auto B fährt mit \(v_B=50\ \frac{km}{h}\).

Wie lange brauchen die Fahrzeuge um aufeinander zu treffen?

Hinweis: Die Beschleunigungsphase der Autos kann vernachlässigt werden.

Nr. 3331
Lösungsweg

4 erreichbare Punkte


NEWS

Derzeit kommt es beim Rendern der Formeln leider zu einem Problem. Wir sind bemüht das Problem zu lösen.

Auch in diesem Semester für alle FHTW Studierenen wieder verfügbar: Der Mathe-Support

Mathematik lernen ist eine Herausforderung, vor allem im Eigenstudium! Sie tun sich schwer beim Lesen von mathematischen Skripten oder kommen bei den Übungsaufgaben nicht weiter? Vielleicht wollen Sie auch einfach nicht alleine, sondern lieber in einer Gruppe lernen? Dann kommen Sie zum Mathe-Support!

https://www.technikum-wien.at/mathe-support/

Die Mathe Plattform des Technikum Wien gewinnt den eLearning Award 2019 als Projekt des Jahres in der Kategorie Hochschule.

Festigen Sie Ihre Grundkenntnisse und bereiten Sie sich auf Prüfungen vor.
Im Juli starten wieder die Warm-up Kurse - ein kostenloser Service für Aufgenommene und Studierende der FHTW.


Mathematik, Physik, Elektrotechnik, Informatik, Englisch und Deutsch in kompakten Kursen, geblockt bis September.

Anmeldung und Informationen
Warm-up-Kurse

Die Plattform wächst! Wir bauen im Moment den Bereich des Studienwissens aus. Bitte haben Sie Verständnis, dass die Inhalte dort erst nach und nach ergänzt werden. Ebenso kann es bei Design und Grafik noch zu Änderungen, Verbesserungen und kleinen Bugs kommen. Danke für Ihr Verständnis!

weitere News