Übungstest

Dieser Übungstest besteht aus 8 Fragen zu Einfache Kinematik.
Die Schwierigkeitsstufe ist leicht bis schwer.
Es können bei jeder Frage eine oder mehrere Antworten korrekt sein, aber nie alle.

Test als PDF ausgeben (Kann je nach Länge einige Minuten dauern)

Ein Auto fährt mit einer konstanten Geschwindigkeit \(v=43\ \frac{km}{h}\) gerade aus.
Wie weit ist das Auto nach \(t=20\,min\) gefahren?

Nr. 3137
Lösungsweg

5 erreichbare Punkte

Ein Körper wird aus einer Höhe \(h_0=10\, m\) mit einer Geschwindigkeit \(v_0=5\ \frac{m}{s}\) senkrecht nach oben geworfen. Zu welchem Zeitpunkt \(t_2\)  erreicht der Körper den (Erd-)Boden? Rechne dabei mit \(g= 10\ \frac{m}{s^2}\).

Nr. 4431
Lösungsweg

5 erreichbare Punkte

Auf den geöffneten Fallschirm eines Fallschirmspringers wirke infolge des Luftreibung eine Bremsbeschleunigung \(a=-b v^2\) mit der Konstanten \(b=0,2\) . Wie groß ist die konstante Endgeschwindigkeit \(v_e\) des Springers?

Nr. 4168
Lösungsweg

4 erreichbare Punkte

Ein Zug bremst (gleichförmig) in \(50\,s\) von \(v_1=180\ \frac{km}{h}\) auf \(v_2=0\ \frac{km}{h}\).

Gib die Beschleunigung \(a\) an, die auf die Fahrgäste wirkt.

Nr. 1840
Lösungsweg

5 erreichbare Punkte

Ein Auto  beschleunigt von \(v_1=30\ \frac{km}{h}\) auf \(v_2=90\ \frac{km}{h}\) gleichmäßig mit \(a=2,9\ \frac{m}{s^2}\).

Wie lange braucht es dafür?

Nr. 3325
Lösungsweg

5 erreichbare Punkte

Ein Auto hat die Anfangsgeschwindigkeit \(v_0 = 30,0 \ \frac{km}{h}\) und beschleunigt in \(20,0\) Sekunden gleichförmig auf die
Geschwindigkeit \(v_1=50,0 \ \frac{km}{h}\). Berechne die in dieser Zeit zurückgelegte Stecke \(s\) (Beschleunigungsstecke).

Nr. 1534
Lösungsweg

5 erreichbare Punkte

Usain Bolt beschleunigt beim Start eines Sprints in \(t=2\,s\) von \(v_1=0\ \frac{km}{h}\) auf \(v_2=36\ \frac{km}{h}\).

Wie hoch ist seine Beschleunigung \(a\) (in der Annahme, dass er gleichförmig beschleunigt)?

Nr. 1839
Lösungsweg

4 erreichbare Punkte

Ein Auto fährt mit einer konstanten Geschwindigkeit \(v_1=30\,\frac{km}{h} \) für eine Zeit \(t_1=20\,min\) gerade aus und danach für \(t_2=10\,min\) mit \(v_2=50\,\frac{km}{h}\).

Nun kehrt das Auto zurück zum Ausgangspunkt mit einer Geschwindigkeit  \(v_3=20\,\frac{km}{h}\). Wie lange dauert die Rückfahrt? 

Hinweis: Beschleunigungsphasen dazwischen können vernachlässigt werden

Nr. 3336
Lösungsweg

4 erreichbare Punkte


NEWS

Derzeit kommt es beim Rendern der Formeln leider zu einem Problem. Wir sind bemüht das Problem zu lösen.

Auch in diesem Semester für alle FHTW Studierenen wieder verfügbar: Der Mathe-Support

Mathematik lernen ist eine Herausforderung, vor allem im Eigenstudium! Sie tun sich schwer beim Lesen von mathematischen Skripten oder kommen bei den Übungsaufgaben nicht weiter? Vielleicht wollen Sie auch einfach nicht alleine, sondern lieber in einer Gruppe lernen? Dann kommen Sie zum Mathe-Support!

https://www.technikum-wien.at/mathe-support/

Die Mathe Plattform des Technikum Wien gewinnt den eLearning Award 2019 als Projekt des Jahres in der Kategorie Hochschule.

Festigen Sie Ihre Grundkenntnisse und bereiten Sie sich auf Prüfungen vor.
Im Juli starten wieder die Warm-up Kurse - ein kostenloser Service für Aufgenommene und Studierende der FHTW.


Mathematik, Physik, Elektrotechnik, Informatik, Englisch und Deutsch in kompakten Kursen, geblockt bis September.

Anmeldung und Informationen
Warm-up-Kurse

Die Plattform wächst! Wir bauen im Moment den Bereich des Studienwissens aus. Bitte haben Sie Verständnis, dass die Inhalte dort erst nach und nach ergänzt werden. Ebenso kann es bei Design und Grafik noch zu Änderungen, Verbesserungen und kleinen Bugs kommen. Danke für Ihr Verständnis!

weitere News

Wussten Sie schon?

Wenn Sie einen Benutzer haben, vergessen Sie nicht, sich rechts oben anzumelden. Nur dann wird Ihr Lernfortschritt gespeichert.